3.1.41 \(\int \frac {1}{(3-5 \cos (c+d x))^4} \, dx\) [41]

Optimal. Leaf size=138 \[ -\frac {279 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{32768 d}+\frac {279 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{32768 d}-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}+\frac {25 \sin (c+d x)}{512 d (3-5 \cos (c+d x))^2}-\frac {995 \sin (c+d x)}{24576 d (3-5 \cos (c+d x))} \]

[Out]

-279/32768*ln(cos(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c))/d+279/32768*ln(cos(1/2*d*x+1/2*c)+2*sin(1/2*d*x+1/2*c))
/d-5/48*sin(d*x+c)/d/(3-5*cos(d*x+c))^3+25/512*sin(d*x+c)/d/(3-5*cos(d*x+c))^2-995/24576*sin(d*x+c)/d/(3-5*cos
(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {2743, 2833, 12, 2738, 213} \begin {gather*} -\frac {995 \sin (c+d x)}{24576 d (3-5 \cos (c+d x))}+\frac {25 \sin (c+d x)}{512 d (3-5 \cos (c+d x))^2}-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}-\frac {279 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{32768 d}+\frac {279 \log \left (2 \sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}{32768 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(3 - 5*Cos[c + d*x])^(-4),x]

[Out]

(-279*Log[Cos[(c + d*x)/2] - 2*Sin[(c + d*x)/2]])/(32768*d) + (279*Log[Cos[(c + d*x)/2] + 2*Sin[(c + d*x)/2]])
/(32768*d) - (5*Sin[c + d*x])/(48*d*(3 - 5*Cos[c + d*x])^3) + (25*Sin[c + d*x])/(512*d*(3 - 5*Cos[c + d*x])^2)
 - (995*Sin[c + d*x])/(24576*d*(3 - 5*Cos[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2743

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
+ 1)/(d*(n + 1)*(a^2 - b^2))), x] + Dist[1/((n + 1)*(a^2 - b^2)), Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n +
 1) - b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Integ
erQ[2*n]

Rule 2833

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b
^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {1}{(3-5 \cos (c+d x))^4} \, dx &=-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}+\frac {1}{48} \int \frac {-9-10 \cos (c+d x)}{(3-5 \cos (c+d x))^3} \, dx\\ &=-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}+\frac {25 \sin (c+d x)}{512 d (3-5 \cos (c+d x))^2}+\frac {\int \frac {154+75 \cos (c+d x)}{(3-5 \cos (c+d x))^2} \, dx}{1536}\\ &=-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}+\frac {25 \sin (c+d x)}{512 d (3-5 \cos (c+d x))^2}-\frac {995 \sin (c+d x)}{24576 d (3-5 \cos (c+d x))}+\frac {\int -\frac {837}{3-5 \cos (c+d x)} \, dx}{24576}\\ &=-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}+\frac {25 \sin (c+d x)}{512 d (3-5 \cos (c+d x))^2}-\frac {995 \sin (c+d x)}{24576 d (3-5 \cos (c+d x))}-\frac {279 \int \frac {1}{3-5 \cos (c+d x)} \, dx}{8192}\\ &=-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}+\frac {25 \sin (c+d x)}{512 d (3-5 \cos (c+d x))^2}-\frac {995 \sin (c+d x)}{24576 d (3-5 \cos (c+d x))}-\frac {279 \text {Subst}\left (\int \frac {1}{-2+8 x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{4096 d}\\ &=-\frac {279 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{32768 d}+\frac {279 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{32768 d}-\frac {5 \sin (c+d x)}{48 d (3-5 \cos (c+d x))^3}+\frac {25 \sin (c+d x)}{512 d (3-5 \cos (c+d x))^2}-\frac {995 \sin (c+d x)}{24576 d (3-5 \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(288\) vs. \(2(138)=276\).
time = 0.16, size = 288, normalized size = 2.09 \begin {gather*} \frac {467046 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )-104625 \cos (3 (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )-765855 \cos (c+d x) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+376650 \cos (2 (c+d x)) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-2 \sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )-467046 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )+104625 \cos (3 (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )+226140 \sin (c+d x)-190800 \sin (2 (c+d x))+99500 \sin (3 (c+d x))}{393216 d (-3+5 \cos (c+d x))^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(3 - 5*Cos[c + d*x])^(-4),x]

[Out]

(467046*Log[Cos[(c + d*x)/2] - 2*Sin[(c + d*x)/2]] - 104625*Cos[3*(c + d*x)]*Log[Cos[(c + d*x)/2] - 2*Sin[(c +
 d*x)/2]] - 765855*Cos[c + d*x]*(Log[Cos[(c + d*x)/2] - 2*Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + 2*Sin[(c
+ d*x)/2]]) + 376650*Cos[2*(c + d*x)]*(Log[Cos[(c + d*x)/2] - 2*Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + 2*S
in[(c + d*x)/2]]) - 467046*Log[Cos[(c + d*x)/2] + 2*Sin[(c + d*x)/2]] + 104625*Cos[3*(c + d*x)]*Log[Cos[(c + d
*x)/2] + 2*Sin[(c + d*x)/2]] + 226140*Sin[c + d*x] - 190800*Sin[2*(c + d*x)] + 99500*Sin[3*(c + d*x)])/(393216
*d*(-3 + 5*Cos[c + d*x])^3)

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 140, normalized size = 1.01

method result size
norman \(\frac {-\frac {745 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8192 d}+\frac {265 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{768 d}-\frac {295 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{512 d}}{\left (4 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )^{3}}-\frac {279 \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{32768 d}+\frac {279 \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{32768 d}\) \(105\)
risch \(-\frac {i \left (20925 \,{\mathrm e}^{5 i \left (d x +c \right )}-62775 \,{\mathrm e}^{4 i \left (d x +c \right )}+111042 \,{\mathrm e}^{3 i \left (d x +c \right )}-119310 \,{\mathrm e}^{2 i \left (d x +c \right )}+68625 \,{\mathrm e}^{i \left (d x +c \right )}-24875\right )}{12288 d \left (5 \,{\mathrm e}^{2 i \left (d x +c \right )}-6 \,{\mathrm e}^{i \left (d x +c \right )}+5\right )^{3}}-\frac {279 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {3}{5}-\frac {4 i}{5}\right )}{32768 d}+\frac {279 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {3}{5}+\frac {4 i}{5}\right )}{32768 d}\) \(129\)
derivativedivides \(\frac {-\frac {125}{49152 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}+\frac {25}{8192 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {295}{32768 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {279 \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{32768}-\frac {125}{49152 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {25}{8192 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {295}{32768 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {279 \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{32768}}{d}\) \(140\)
default \(\frac {-\frac {125}{49152 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}+\frac {25}{8192 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {295}{32768 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {279 \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{32768}-\frac {125}{49152 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {25}{8192 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {295}{32768 \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {279 \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{32768}}{d}\) \(140\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3-5*cos(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

1/d*(-125/49152/(2*tan(1/2*d*x+1/2*c)-1)^3+25/8192/(2*tan(1/2*d*x+1/2*c)-1)^2-295/32768/(2*tan(1/2*d*x+1/2*c)-
1)-279/32768*ln(2*tan(1/2*d*x+1/2*c)-1)-125/49152/(2*tan(1/2*d*x+1/2*c)+1)^3-25/8192/(2*tan(1/2*d*x+1/2*c)+1)^
2-295/32768/(2*tan(1/2*d*x+1/2*c)+1)+279/32768*ln(2*tan(1/2*d*x+1/2*c)+1))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 177, normalized size = 1.28 \begin {gather*} -\frac {\frac {20 \, {\left (\frac {447 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {1696 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {2832 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{\frac {12 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {48 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {64 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - 1} - 837 \, \log \left (\frac {2 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right ) + 837 \, \log \left (\frac {2 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{98304 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*cos(d*x+c))^4,x, algorithm="maxima")

[Out]

-1/98304*(20*(447*sin(d*x + c)/(cos(d*x + c) + 1) - 1696*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 2832*sin(d*x +
c)^5/(cos(d*x + c) + 1)^5)/(12*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 48*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 +
64*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 1) - 837*log(2*sin(d*x + c)/(cos(d*x + c) + 1) + 1) + 837*log(2*sin(d
*x + c)/(cos(d*x + c) + 1) - 1))/d

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 170, normalized size = 1.23 \begin {gather*} \frac {837 \, {\left (125 \, \cos \left (d x + c\right )^{3} - 225 \, \cos \left (d x + c\right )^{2} + 135 \, \cos \left (d x + c\right ) - 27\right )} \log \left (-\frac {3}{2} \, \cos \left (d x + c\right ) + 2 \, \sin \left (d x + c\right ) + \frac {5}{2}\right ) - 837 \, {\left (125 \, \cos \left (d x + c\right )^{3} - 225 \, \cos \left (d x + c\right )^{2} + 135 \, \cos \left (d x + c\right ) - 27\right )} \log \left (-\frac {3}{2} \, \cos \left (d x + c\right ) - 2 \, \sin \left (d x + c\right ) + \frac {5}{2}\right ) + 40 \, {\left (4975 \, \cos \left (d x + c\right )^{2} - 4770 \, \cos \left (d x + c\right ) + 1583\right )} \sin \left (d x + c\right )}{196608 \, {\left (125 \, d \cos \left (d x + c\right )^{3} - 225 \, d \cos \left (d x + c\right )^{2} + 135 \, d \cos \left (d x + c\right ) - 27 \, d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*cos(d*x+c))^4,x, algorithm="fricas")

[Out]

1/196608*(837*(125*cos(d*x + c)^3 - 225*cos(d*x + c)^2 + 135*cos(d*x + c) - 27)*log(-3/2*cos(d*x + c) + 2*sin(
d*x + c) + 5/2) - 837*(125*cos(d*x + c)^3 - 225*cos(d*x + c)^2 + 135*cos(d*x + c) - 27)*log(-3/2*cos(d*x + c)
- 2*sin(d*x + c) + 5/2) + 40*(4975*cos(d*x + c)^2 - 4770*cos(d*x + c) + 1583)*sin(d*x + c))/(125*d*cos(d*x + c
)^3 - 225*d*cos(d*x + c)^2 + 135*d*cos(d*x + c) - 27*d)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 831 vs. \(2 (126) = 252\).
time = 2.74, size = 831, normalized size = 6.02 \begin {gather*} \begin {cases} \frac {x}{\left (3 - 5 \cos {\left (2 \operatorname {atan}{\left (\frac {1}{2} \right )} \right )}\right )^{4}} & \text {for}\: c = - d x - 2 \operatorname {atan}{\left (\frac {1}{2} \right )} \vee c = - d x + 2 \operatorname {atan}{\left (\frac {1}{2} \right )} \\\frac {x}{\left (3 - 5 \cos {\left (c \right )}\right )^{4}} & \text {for}\: d = 0 \\- \frac {53568 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} - 1 \right )} \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} + \frac {40176 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} - 1 \right )} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} - \frac {10044 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} - 1 \right )} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} + \frac {837 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} - 1 \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} + \frac {53568 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1 \right )} \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} - \frac {40176 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1 \right )} \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} + \frac {10044 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1 \right )} \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} - \frac {837 \log {\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1 \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} - \frac {56640 \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} + \frac {33920 \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} - \frac {8940 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6291456 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 4718592 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 1179648 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 98304 d} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*cos(d*x+c))**4,x)

[Out]

Piecewise((x/(3 - 5*cos(2*atan(1/2)))**4, Eq(c, -d*x - 2*atan(1/2)) | Eq(c, -d*x + 2*atan(1/2))), (x/(3 - 5*co
s(c))**4, Eq(d, 0)), (-53568*log(2*tan(c/2 + d*x/2) - 1)*tan(c/2 + d*x/2)**6/(6291456*d*tan(c/2 + d*x/2)**6 -
4718592*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)**2 - 98304*d) + 40176*log(2*tan(c/2 + d*x/2) - 1)*t
an(c/2 + d*x/2)**4/(6291456*d*tan(c/2 + d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)
**2 - 98304*d) - 10044*log(2*tan(c/2 + d*x/2) - 1)*tan(c/2 + d*x/2)**2/(6291456*d*tan(c/2 + d*x/2)**6 - 471859
2*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)**2 - 98304*d) + 837*log(2*tan(c/2 + d*x/2) - 1)/(6291456*
d*tan(c/2 + d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)**2 - 98304*d) + 53568*log(2
*tan(c/2 + d*x/2) + 1)*tan(c/2 + d*x/2)**6/(6291456*d*tan(c/2 + d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 11
79648*d*tan(c/2 + d*x/2)**2 - 98304*d) - 40176*log(2*tan(c/2 + d*x/2) + 1)*tan(c/2 + d*x/2)**4/(6291456*d*tan(
c/2 + d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)**2 - 98304*d) + 10044*log(2*tan(c
/2 + d*x/2) + 1)*tan(c/2 + d*x/2)**2/(6291456*d*tan(c/2 + d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 1179648*
d*tan(c/2 + d*x/2)**2 - 98304*d) - 837*log(2*tan(c/2 + d*x/2) + 1)/(6291456*d*tan(c/2 + d*x/2)**6 - 4718592*d*
tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)**2 - 98304*d) - 56640*tan(c/2 + d*x/2)**5/(6291456*d*tan(c/2
+ d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)**2 - 98304*d) + 33920*tan(c/2 + d*x/2
)**3/(6291456*d*tan(c/2 + d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 + d*x/2)**2 - 98304*d)
 - 8940*tan(c/2 + d*x/2)/(6291456*d*tan(c/2 + d*x/2)**6 - 4718592*d*tan(c/2 + d*x/2)**4 + 1179648*d*tan(c/2 +
d*x/2)**2 - 98304*d), True))

________________________________________________________________________________________

Giac [A]
time = 0.43, size = 97, normalized size = 0.70 \begin {gather*} -\frac {\frac {20 \, {\left (2832 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 1696 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 447 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (4 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}} - 837 \, \log \left ({\left | 2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) + 837 \, \log \left ({\left | 2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{98304 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-5*cos(d*x+c))^4,x, algorithm="giac")

[Out]

-1/98304*(20*(2832*tan(1/2*d*x + 1/2*c)^5 - 1696*tan(1/2*d*x + 1/2*c)^3 + 447*tan(1/2*d*x + 1/2*c))/(4*tan(1/2
*d*x + 1/2*c)^2 - 1)^3 - 837*log(abs(2*tan(1/2*d*x + 1/2*c) + 1)) + 837*log(abs(2*tan(1/2*d*x + 1/2*c) - 1)))/
d

________________________________________________________________________________________

Mupad [B]
time = 2.01, size = 102, normalized size = 0.74 \begin {gather*} \frac {279\,\mathrm {atanh}\left (2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{16384\,d}-\frac {\frac {295\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{32768}-\frac {265\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{49152}+\frac {745\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{524288}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-\frac {3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{4}+\frac {3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{16}-\frac {1}{64}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(5*cos(c + d*x) - 3)^4,x)

[Out]

(279*atanh(2*tan(c/2 + (d*x)/2)))/(16384*d) - ((745*tan(c/2 + (d*x)/2))/524288 - (265*tan(c/2 + (d*x)/2)^3)/49
152 + (295*tan(c/2 + (d*x)/2)^5)/32768)/(d*((3*tan(c/2 + (d*x)/2)^2)/16 - (3*tan(c/2 + (d*x)/2)^4)/4 + tan(c/2
 + (d*x)/2)^6 - 1/64))

________________________________________________________________________________________